Lithium-Verbindungen eines Silandiols, 1-Fluor-1,3-disiloxan-3-ols und 1-Fluor-1,3,5-trisiloxan-5-ols; Synthese und Kristallstrukturen

Dieter Schmidt-Bäse und Uwe Klingebiel*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 11. November 1988

Key Words: Fluorosiloxanols / Lithium fluorosiloxanolates

Das lithiierte Disilanol (CMe₃)₂Si(OLi)OH (2) dient in Reaktionen mit Halogensilanen als Startmaterial zum stufenweisen Aufbau von Siloxanolen 3, 8, 10 und Siloxanen 6, 9. n-C₄H₉Li reagiert mit 3 und 10 zu den Lithium-Verbindungen 7 und 11. Das Lithium ist in 2 tetraedrisch, in 7 trigonal-pyramidal und in 11 planar koordiniert. Die Bindungspartner des Lithiums in 2 sind vier Si-O-Atome, in 7 zwei Si-O-Atome und ein THF-Molekül und in 11 zwei Si-O- und ein Si-F-Atom. Die Kristallstrukturen von 2, 7 und 11 werden diskutiert.

Die Tendenz des elektropositiven Lithiums, im Molekül eine Bindung zum elektronegativsten Atom zu suchen, führte in jüngster Zeit zu interessanten Ergebnissen in der FSiN-¹⁾ und FSiP²⁾-Chemie. Kristallstrukturuntersuchungen an diesen Lithium-Verbindungen lieferten zum Teil verblüffende Resultate. Sie zeigen, daß Lithium-Strukturen selten klassischen Bindungstheorien folgen^{1,2)} RSiOLi-Bausteine ($\mathbf{R} = \mathbf{OH}, \mathbf{NH}_2, \mathbf{Hal}$) dienen seit den achtziger Jahren als Reaktionszwischenstufen zur schrittweisen Synthese ketten- und ringförmiger Siloxane³⁻⁶⁾. Mit Ausnahme eines lithijerten Aminosilanols⁵⁾ und eines Aminosiloxanols⁶⁾ ist der strukturelle Aufbau der lithiierten Silanole unbekannt. Da die Strukturen solcher Zwischenstufen häufig Aufschluß über Reaktionsmechanismen geben können⁷, synthetisierten wir ein lithiiertes Silandiol, 1,3-Disiloxanol und 1,3,5-Trisiloxanol und führten die Kristallstrukturbestimmungen durch.

Ergebnisse und Diskussion

Di-tert-butylsilandiol $(1)^{8.9}$ wird in Hexan mit *n*-Butyllithium unter Butan-Abspaltung lithiiert. Der dabei auftretende Niederschlag wird durch Zugabe von THF in Lösung gebracht.

Die Lithium-Verbindung 2 kristallisiert nach 24 h bei $+3^{\circ}$ C aus. Die Kristalle enthalten THF.

In der Umsetzung von 2 mit Di-*tert*-butyldifluorsilan entsteht das 1-Fluor-3-hydroxy-funktionelle Disiloxan 3^{10} .

Der Fluor-Substituent in Nachbarschaft zur Hydroxy-Gruppe sollte es ermöglichen, Lithium neben dem Sauerstoff Fluor als Bindungspartner zur Verfügung zu stellen. Die Lithiierung erfolgt in Hexan.

Lithium Compounds of a Silanediol, a I-Fluoro-1,3-disiloxane-3ol, and a 1-Fluoro-1,3,5-trisiloxane-5-ol; Synthesis and Crystal Structures

The lithiated disilanol (CMe₃)₂Si(OLi)OH (2) serves as a starting material in the reaction with halosilanes for the stepwise construction of siloxanols 3, 8, 10 and siloxanes 6, 9, 3 and 10 react with n-C₄H₉Li to give the lithium compounds 7 and 11. The coordination at lithium is tetrahedral in 2, trigonal pyramidal in 7, and planar in 11. Lithium is bound to four Si – O atoms in 2, two Si – O atoms and one THF molecule in 7, and two Si – O atoms and one Si – F atom in 11. The crystal structures of 2, 7, and 11 are discussed.

Die Kristalle von 5 erwiesen sich bei Raumtemperatur im Röntgenstrahl als nicht stabil. Durch Umkristallisation von 5 aus THF wird die THF-koordinierte Verbindung 7 erhalten.

Zur Synthese eines 1-Fluor-5-hydroxy-funktionellen Trisiloxans sollte 1,1-Di-(*tert*-butyl)-3-chlor-3,3-dimethyl-1,3-disiloxan-1-ol (4) als Baustein dienen. Die Reaktion von

0009-2940/89/0505-0815 \$ 02.50/0

2 mit Dichlordimethylsilan führt jedoch nicht zur Zielverbindung 4, sondern zum Disubstitutionsprodukt 6.

Die kleinen Methyl-Substituenten erlauben einen Angriff des Chlorsilans auf das acide Proton von 4, so daß 6 gebildet wird. In der Umsetzung mit Difluordimethylsilan gelingt die Isolierung des erwarteten Monosubstitutionsproduktes 8, wenngleich auch hier aufgrund einer Umlithiierung in geringen Mengen (5%) das Trisiloxan 9 entsteht. Die Lithium-Verbindung 8a wurde nicht isoliert.

Ausgehend von 8 wird durch Umsetzung mit lithiiertem Fluorsilanol das 1-Fluor-5-hydroxy-funktionelle Trisiloxan 10 erhalten. 10 ist eine farblose Flüssigkeit und wird in Hexan lithiiert.

Der auftretende Niederschlag wird durch Erwärmen gelöst. Nach 12 h bilden sich farblose Kristalle von 11.

Kristallstrukturen von 2, 7 und 11

2 bildet im festen Zustand ein Tetramer (s. Abb. 1) mit annähernder Cuban-Struktur^{5,7)} (zwei Tetramere in der asymmetrischen Einheit). Der verzerrte Würfel besteht aus sich durchdringenden Li₄- und O₄-Tetraedern (Li-Li 253-263, O-O 291-314 pm). Jedes Lithium-Atom ist vierfach koordiniert und erreicht dies neben dem Sauerstoff der "Stammverbindung 1" über die Koordination zu zwei benachbarten lithiierten Sauerstoff-Atomen und zu einer Hydroxy-Gruppe. Die daraus resultierenden Li-O-Bindungsabstände sind auf den planaren Seitenflügeln länger [z. B. Li(1) - O(3) 212.3, Li(1) - O(4) 202.4 pm] als die beiden restlichen Cuban-Bindungen [Li(1) – O(1) 192.3, Li(1) – O(7)190.6 pm]. Daraus ergibt sich ein interessantes Muster (s. Abb. 2): Ober- und Unterfläche zeigen, hervorgerufen durch die Seitenflügel, alternierend lange und kurze Bindungen, wobei sich gemäß der Anordnung der Seitenflügel jeweils kurze und lange Bindungen von Ober- und Unterfläche gegenüberstehen. Beide Flächen sind über kurze Li-O-Abstände miteinander verbunden. Die Bindung vom Silicium zum Hydroxy-Sauerstoff ist aufgrund dessen Koordination zum Lithium leicht gestreckt. Der Abstand zum lithijerten Sauerstoff ist im Schnitt 7 pm kürzer gegenüber der Si-O-Bindung in der Diol-Verbindung (164.6 pm)^{8,9)}.

Ein Teil der lokalisierten THF-Moleküle bildet Wasserstoff-Brücken zu den Hydroxy-Funktionen aus (O-O-Abstand 264–278 pm), ein anderer Teil ist nicht assoziiert. Sie dienen nicht als Donor-Moleküle für die Lithium-Atome.

Abb. 1. Struktur von 2 im Kristall

Abb. 2. Li-O-Bindungslängen im Cuban von 2

7 bildet in der Kristallstruktur ein Dimer mit einem zentralen Li-O-Vierring, über den sich die *tert*-Butyl-Gruppen der Disiloxan-Kettenenden beugen. Die Lithium-Atome sind dreifach koordiniert und sättigen sich durch ein Lösungsmittelmolekül THF ab. Die THF-Moleküle stehen leicht abgeknickt zur Li-O-Vierringebene (ca. 30°). Die Geometrie der Lithium-Koordination ist somit nicht planar, sondern tendenziell trigonal-pyramidal.

Die THF-Moleküle schieben sich offenbar in die einzig freien Lücken der Dimereinheit. Um den Wechselwirkungen mit den "oberen" *tert*-Butyl-Gruppen von Si(2) und Si(3) auszuweichen, sind sie nach "unten" gerichtet und stellen ihre Ringebene senkrecht zum zentralen Li-O-Vierring.

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter (pm² × 10⁻¹) von 2^{a_1}

Tab. 1 (Fortsetzung)

Atom x y z U(eq) 51(1) 3337(1) 2818(2) 9613(1) 62(2) 2064(2) 2637(2) 997(2) 200(1) 51(2) 730(1) 1429(2) 9613(1) 62(1) C(23) 2064(2) 2537(2) 207(2) 207(1) 51(4) 3451(2) 3455(2) 993(2) 64(1) 62(2) 1129(1) 3137(1) 277(7) 227(2) <th></th> <th></th> <th></th> <th></th> <th></th> <th>······</th> <th></th> <th></th> <th></th> <th></th>						······				
	Atom	x	y	z	U(eq)	Atom	×	У	Z	U(eq)
$ \begin{array}{c} s1(2) & 730; (3) & 120; (2) & 933; (1) & 62(1) & c(23) & 2006(18) & 303(11) & 2057(6) & 207(17) & 204(16) \\ s1(0) & 6431(3) & 365; (2) & 766(1) & 64(1) & c(133) & 1137(18) & 3617(13) & 2057(7) & 204(16) \\ s1(1) & 577(61) & 2257(6) & 960(17) & 770; (9) & c(133) & 2037(13) & 1392(8) & 3132(8) & 1302(16) \\ c(2) & 3077(61) & 3459; (3) & 9515; (3) & 76(4) & c(423) & 4457(13) & 1286(1) & 3352(8) & 173(12) \\ c(1) & 3276(13) & 1285(1) & 1305(1) & 167(17) & 167(19) & c(433) & 4437(13) & 2264(12) & 4097(8) & 121(16) \\ c(2) & 2664(13) & 1397(19) & 9217(1) & 86(7) & c(433) & 4431(14) & 2064(12) & 4097(8) & 121(16) \\ c(3) & 2664(13) & 1397(19) & 9217(1) & 85(7) & c(733) & -1364(17) & 3345(1) & 443(8) & 302(14) \\ c(4) & 6479(6) & 1932(2) & 10066(3) & 75(4) & c(143) & -1464(17) & 3141(13) & 3142(7) & 206(15) \\ c(4) & 6479(6) & 1932(2) & 10066(3) & 75(4) & c(143) & -1467(17) & 3141(13) & 3142(7) & 206(15) \\ c(3) & 6447(1) & 657(6) & 910(5) & 80(6) & c(733) & -1472(17) & 311(11) & 3142(7) & 206(17) \\ c(5) & 6435(5) & 2706(13) & 8204(2) & 66(3) & c77(33) & -1472(17) & 311(11) & 3142(7) & 206(17) \\ c(5) & 6435(5) & 2706(13) & 8204(2) & 66(3) & c77(3) & -1467(17) & 311(11) & 3142(7) & 206(17) \\ c(5) & 5445(15) & 2756(16) & 910(15) & 80(6) & c77(3) & -1472(17) & 311(11) & 3142(7) & 206(17) \\ c(5) & 5445(15) & 2756(16) & 8206(1) & 67(1) & c(143) & 1447(17) & 314(13) & 3147(17) & 206(17) \\ c(5) & 5445(15) & 2756(16) & 8206(1) & 67(1) & c(143) & 1467(17) & 311(11) & 3142(17) & 324(17) \\ c(5) & 5445(15) & 2756(16) & 8206(1) & 67(17) & 111(10) & c(243) & 1472(17) & 3142(17) & 3142(17) & 324(17) & $	Si(1)	3337(3)	2818(2)	9613(1)	63(2)	C(22\$)	2004(17)	2657(9)	5972(7)	200(15)
\$1(3) 5327(3) 2282(2) 72842(1) 68(2) C(13) 2537(13) 2570(7) 2221(2) 0(1) 4443(3) 2438(1) 9433(2) 5(3) C(13) 2284(10) 2346(10) 2357(6) 197(16) 0(1) 3266(11) 2354(10) 2367(10)	Si(2)	7305(3)	1429(2)	9634(1)	62(1)	C(23S)	2006(18)	3303(11)	5095(8)	207(17)
Sittés 661(2) 2862(2) 9019(1) 661(2) Cit221 1129(18) 561(7123) 2237(6) 1297(6) Li(1) 5778(16) 2535(3) 960(7) 70(9) Cit231 2289(16) 2384(10) 2327(6) 1947(6) Li(1) 5778(16) 2535(3) 980(7) 70(9) Cit231 2487(10)	Si(3)	5357(3)	2298(2)	7848(1)	69(2)	c(31\$)	2933(19)	3501(11)	2347(7)	222(18)
0:C1) 4483(3) 2239(2) 5432(2) 54(3) CC335 2298(16) 2236(16) 1392(6) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(16) 120(17) 120(16) 120(17) 12	Si(4)	6431(3)	3865(2)	8919(1)	64(1)	C(32\$)	1129(18)	3617(13)	2570(7)	239(15)
14(1) 5778(15) 2551(2) 2551(2) 2551(2) 1782(4) 1782(4) 1782(4) 0(2) 3264(11) 3364(4) 3367(4) 3362(4) 1362(4) 1362(4) 0(2) 2584(11) 3364(4) 5367(7) 56(7) C(13) -2582(10) 3364(2) 2364(2)	0(1)	4483(5)	2439(3)	9433(2)	54(3)	C(335)	2298(19)	2584(10)	2325(6)	197(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li(1)	5778(16)	2555(9)	9601(7)	70(9)	C(415)	4278(13)	1789(8)	3192(8)	158(11)
	0(2)	3077(6)	3499(3)	9155(3)	76(4)	C(425)	4547(14)	2846(10)	3365(8)	175(12)
c12) 2359(11) 2354(17) 59(17) c1213) -2229(15) 5008(5) 4039(6) 194(14) L1(2) 664(16) 2663(7) 64(8) c(33) 51(1) 53(4)	C(1)	3268(11)	3096(7)	10277(5)	86(7)	C(420)	3813(14)	2040(10)	4007(8)	211(16)
0:01 11(2) 6698(5) 1283(5) 912(2) 1223(17) 4385(8) 4443(8) 201(12) 0:14(2) 6641(16) 667(9) 1952(3) 10086(3) 75(4) C(615) -175(17) 3003(8) 3542(9) 203(17) 0:15(3) 6664(11) 667(6) 950(6) 80(6) C(615) -175(17) 3003(8) 3242(7) 2247(12) 1283(10) 264(18) 0:13(3) 531(17) 2726(13) 197(10) 333(10) 224(15) 234(11) 233(10) 224(16) 234(11) 233(11) 233(11) 232(16) 232(16) 1343(16) 233(11)	C(2)	2360(11)	2354(0)	0564(7)	80(7)	C(516)	. 2820(16)	5008(0)	4037(0)	10/(10)
$ \begin{array}{c} 11(2) & 664(16) & 2663(2) & 8658(7) & 44(6) & C(533) & -1175(77) & 5003(8) & 5346(2) & 026(15) \\ C(4) & 876(10) & 1277(6) & 598(5) & 816(6) & C(643) & -2506(22) & 3182(71) & 288(10) & 262(6) \\ C(5) & 5435(5) & 2704(3) & 828(2) & 60(3) & C(713) & -1472(17) & 8114(11) & 2334(7) & 206(17) \\ C(5) & 5435(5) & 2704(3) & 828(2) & 60(3) & C(713) & -1472(17) & 8114(11) & 2334(7) & 206(17) \\ C(5) & 5435(5) & 2704(3) & 828(2) & 60(3) & C(713) & -1472(17) & 8114(11) & 2334(7) & 206(17) \\ C(5) & 5464(15) & 2755(10) & 7400(7) & 121(10) & C(223) & 1345(16) & 273(16) & 322(17) & 22(18) \\ C(5) & 5464(15) & 2755(10) & 7400(7) & 121(10) & C(223) & 1345(16) & 233(8) & 427(7) & 191(12) \\ O(7) & 5755(5) & 3362(3) & 9151(3) & 59(3) & C(333) & 1021(17) & 328(8) & 3359(8) & 190(13) \\ D(6) & 7384(14) & 322(10) & 8518(17) & 74(6) & C(23) & 3442(22) & 547(12) & 3645(12) & 2246(23) \\ C(6) & 5484(14) & 225(10) & 7400(7) & C(3A) & 3442(22) & 547(12) & 465(12) & 2246(23) \\ C(11) & 548(14) & 322(10) & 8518(17) & 74(6) & C(2A) & 3442(22) & 547(12) & 465(12) & 2246(23) \\ C(12) & 238(11) & 4530(9) & 10454(7) & 197(11) & C(2A) & 448(22) & 457(13) & 102(12) & 30(31) \\ C(12) & 238(11) & 4530(9) & 10454(7) & 197(10) & 847(12) & 455(11) & 203(10) & 112(5) & 147(10) \\ C(13) & 578(11) & 355(12) & 10056(6) & 157(11) & C(A) & 4680(24) & 2699(9) & 1120(9) & 224(13) \\ C(13) & 578(13) & 1355(12) & 1005(6) & 157(13) & C(1B) & 6400(24) & 2699(9) & 1120(9) & 224(13) \\ C(13) & 578(13) & 1355(12) & 1005(6) & 137(10) & C(1B) & 6407(24) & 2697(1) & 1205(9) & 224(12) \\ C(13) & 578(13) & 1355(12) & 1005(6) & 157(13) & C(1B) & 6407(24) & 2697(1) & 1205(9) & 224(12) & 266(27) \\ C(13) & 578(13) & 1355(12) & 1005(6) & 157(13) & C(1B) & 6407(24) & 2697(1) & 1205(9) & 221(18) \\ C(23) & 240(13) & 155(12) & 1005(6) & 107(6) & 240(10) & 055(12) & 157(13) & 107(12) & 236(14) \\ C(23) & 240(13) & 1155(12) & 0001(6) & 214(13) & C(1B) & 6407(13) & 1005(1) & 1307(12) & 236(21) \\ C(13) & 578(13) & 1205(1) & 1305(1) & 1205(1) & 1205(1) & 1205(1) & 1205(1) \\ C(23) & 6455(14) &$	0(3)	6608(5)	1930(3)	0109(2)	55(2)	C(52\$)	-1263(17)	4385(8)	4030(8)	203(14)
$ \begin{array}{c} 1676 \\ 1776 \\ 1$		6641(16)	2663(0)	9459(3)	55(5)	C(53\$)	-1205(17)	5003(8)	35/8(0)	203(14)
$ \begin{array}{c} c_{(4)} & s_{(4)} $	D(4)	6870(6)	1052(3)	10096(2)	75(4)	C(61\$)	-2103(15)	4434(11)	2632(6)	19/(13)
 bicki bicki bicki	0(4)	60/3(0)	1932(3)	10080(3)	75(4)	C(62\$)	3608(15)	4434(11)	2032(0)	216(13)
516 543 (5) 2764 (5) 2924 (2) 201 (2) 231 (11) 235 (12) 292 (11) 235 (12) 292 (11) 235 (12) 292 (11) 235 (12) 292 (11) 235 (12) 292 (12) 233 (13) 297 (12) 206 (12) 235 (12) 292 (12) 235 (12) 292 (12) 235 (12) 292 (12) 235 (12) 292 (12) 235 (12) 23		9762(10)	1070(6)	9910(5)	80(6)	C(636)	- 3008(10)	2102/11)	2020(10)	210(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0(4)	5/35(10)	2704(3)	9300(3)	61(0)	C(715)	-1672(17)	811(11)	2050(10)	205(10)
	1:(3)	53/1(17)	1026(9)	0203(2) 9007(7)	74(0)	C(72\$)	-2296(15)	1702(10)	3033(13)	237(17)
c10 c644(13) 1978(7) 7474(6) 92(8) c26135 1978(7) 1452(8) 1206(11) c(6) 4544(15) 2756(15) 3462(15) 9151(2) 59(3) c26335 1145(16) 2028(8) 3359(8) 190(12) c(7) 711(11) 400(6) 94(7) 156(16) 3425(2) 546(12) 256(12) <t< td=""><td>D(6)</td><td>5068(7)</td><td>1630(6)</td><td>820/(7)</td><td>74(9) 90(4)</td><td>C(738)</td><td>-1366(15)</td><td>571(11)</td><td>4316(8)</td><td>222(16)</td></t<>	D(6)	5068(7)	1630(6)	820/(7)	74(9) 90(4)	C(738)	-1366(15)	571(11)	4316(8)	222(16)
	0(0)	5665(13)	1079(4)	0204(3)	09(4)	C(81\$)	2036(15)	787(8)	3452(0)	200(14)
010 5765(5) 5567(5) 5567(5) 5157(5) 517(15) 7157(5) 717(5) 717(5) 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 7110 <td></td> <td>6045(15)</td> <td>2756(10)</td> <td>7474(0)</td> <td>92(0)</td> <td>C(82S)</td> <td>1345(16)</td> <td>203(8)</td> <td>4271(7)</td> <td>101(12)</td>		6045(15)	2756(10)	7474(0)	92(0)	C(82S)	1345(16)	203(8)	4271(7)	101(12)
01(4) 2418(1)		4240(IJ) 5765(5)	2750(10)	0151(2)	121(10)	C(83¢)	1021(17)	32(8)	3350(0)	100(13)
		5/65(5)	3302(3)	9151(3)	59(5)	000000	2706(13)	4580(7)	3661(7)	108(10)
	L1(4)	7228(14)	3223(3)	0002(7)	00(0)		3/02(10)	4300(7)	3415(10)	252(22)
	C(2)	7320(0)	2423(3)	0//0/(3)	74(4)	C(2A)	3482(22)	5617(12)	3645(10)	252(22)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		/111(11)	4090(6)	9440(6)	80(7)		2583(26)	5526(14)	2042(12)	200(23)
		2289(11)	4013(0)	10(0(())	90(7)		2103(20)	/050(14)	4007(15)	302(26)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	3084(13)	2513(8)	10696(6)	157(11)		7156(11)	2028(10)	4022(11)	175(0)
	C(12)	2231(13)	3500(9)	10454(7)	169(11)		(100(11)	2038(10)	1125(5)	1/5(8)
	C(13)	3988(15)	3556(10)	10218(7)	1//(13)		6009(24)	2099(9)	1205(9)	221(10)
$ \begin{array}{cccccc} C(23) & (240)(13) & (13)(13) & (13)(13) & (13)(14) & (12)(14) & $	C(21)	1247(15)	2/33(9)	9616(9)	191(14)		6206(26)	2/3/(13)	1/02(12)	303(31)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	2510(13)	1/39(8)	9966(/)	143(10)		0442(20)	2091(17)	1980(6)	261(25)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	2480(15)	2165(12)	9041(8)	218(18)		6853(21)	16/0(9)	15//(10)	247(22)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	5774(12)	8/5(/)	10097(6)	124(9)		2818(12)	3542(14)	4681(7)	238(14)
	C(32)	6955(14)	225(6)	94/1(6)	138(10)		5300(30)	3660(10)	5111(13)	2//(25)
$ \begin{array}{cccccc} C(42) & 937(110) & 1838(7) & 9114(6) & 109(8) & C(3C) & 3947(28) & 2406(13) & 3607(11) & 2512(24) \\ C(43) & 9300(11) & 1211(8) & 10047(7) & 136(9) & 0D & -142(15) & 1461(12) & 2076(6) & 239(7) \\ C(51) & 7369(13) & 1403(9) & 7854(6) & 135(11) & C(1D) & 552(26) & 939(9) & 1857(13) & 330(17) \\ C(52) & 6607(17) & 1646(8) & 7001(6) & 171(12) & C(2D) & 798(29) & 1150(19) & 1309(12) & 362(19) \\ C(53) & 7123(15) & 22506(11) & 7130(7) & 179(13) & C(4D) & -377(25) & 2028(9) & 1752(12) & 279(14) \\ C(62) & 3889(17) & 2278(11) & 7135(9) & 217(16) & 0E & 4763(15) & -390(6) & 1991(8) & 204(10) \\ C(63) & 3327(14) & 3046(10) & 7737(7) & 180(13) & C(1E) & 4908(26) & 15(13) & 1531(7) & 257(23) \\ C(71) & 7826(15) & 3461(9) & 9232(7) & 174(13) & 0F & 8609(14) & 5417(7) & 890(7) & 229(7) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 9247(26) & 4482(14) & 804(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 813(3) & 128(11) & C(2F) & 9044(30) & 4267(9) & 992(13) & 296(15) \\ S(14) & -102(3) & 7365(2) & 366(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(12) & 2407(3) & 2836(2) & 3366(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(13) & -1702(3) & 7265(2) & 3660(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(14) & -102(3) & 2776(3) & 3660(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(13) & -1702(3) & 7265(2) & 3660(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(14) & -91(3) & 1290(2) & 3691(1) & 71(2) & C(3F) & 9667(23) & 4456(14) & 1131(14) & 389(21) \\ S(14) & -91(3) & 1290(2) & 3691(1) & 71(2) & C(4F) & 9144(28) & 5155(15) & 1333(11) & 419(25) \\ S(13) & 1776(7) & 178(4) & 503(13) & 66(4) & C(2G) & 295(28) & 3894(22) & 7605(13) & 455(27) \\ S(14) & -776(12) & 2666(7) & 509(13) & 66(7) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 496(26) \\ C(53) & -178(12) & 2002(8) & 509(15) & 92(8) & C(11) & 4492(27) & 1027(18) & 5507(13) & 455(27) \\ C(53) & -178(12) & 2002(8) & 509(15) & 92(8) & C(11) & 4497(25) & 516(18) & 6037(12) & 27$	C(33)	7469(13)	235(7)	103/6(6)	124(8)		5132(32)	34/0(19)	5546(8)	349(34)
$ \begin{array}{ccccc} C(42) & 9300(112) & 622(7) & 9279(6) & 131(8) & C(442) & 363(12) & 222(14) & 4836(12) & 306(12) \\ C(53) & 7369(13) & 1403(9) & 7854(6) & 153(11) & C(1D) & 552(26) & 939(9) & 1857(13) & 330(17) \\ C(52) & 6607(17) & 1466(8) & 7001(6) & 171(12) & C(2D) & 798(29) & 1150(19) & 1309(12) & 362(19) \\ C(53) & 7123(15) & 2506(11) & 7310(7) & 179(13) & C(4D) & -37(25) & 2028(9) & 1752(12) & 279(14) \\ C(62) & 3889(17) & 2278(11) & 7135(9) & 217(16) & 0E & 4763(15) & -390(6) & 1991(8) & 204(10) \\ C(63) & 3327(14) & 3048(10) & 7737(7) & 180(13) & C(1E) & 4908(26) & 15(13) & 1531(7) & 257(23) \\ C(11) & 7826(15) & 346(19) & 9705(7) & 180(13) & C(1E) & 4908(26) & 15(13) & 1531(7) & 257(23) \\ C(72) & 6344(12) & 4476(9) & 9832(7) & 171(13) & C(4E) & 4328(36) & 19(12) & 2366(7) & 359(34) \\ C(81) & 5188(17) & 4379(7) & 8059(7) & 174(13) & C(4E) & 4328(36) & 19(12) & 2366(7) & 359(34) \\ C(81) & 5188(17) & 4379(7) & 8059(7) & 174(13) & C(1F) & 8287(26) & 4827(14) & 804(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4827(14) & 804(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4827(14) & 804(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 8208(8) & 232(14) & C(2F) & 9044(30) & 4267(9) & 992(13) & 296(15) \\ 51(38) & 1702(3) & 3265(2) & 3480(1) & 71(2) & C(3F) & 9697(13) & 456(27) & 990(14) & 368(21) \\ 51(38) & 2407(3) & 2836(2) & 3746(1) & 71(2) & C(4F) & 9184(28) & 5155(15) & 1331(14) & 982(51) \\ 51(38) & 4675(14) & 5023(9) & 8813(7) & 178(2) & 636(9) & 2775(28) & 3136(12) & 7790(14) & 368(21) \\ 51(38) & 2407(3) & 2836(2) & 3746(1) & 71(2) & C(4F) & 9184(28) & 5155(15) & 1331(14) & 389(21) \\ 51(38) & -91(3) & 1290(2) & 3691(1) & 71(2) & C(4F) & 9184(28) & 5155(15) & 1331(14) & 912(25) \\ 51(38) & 4770(7) & 1787(4) & 5031(3) & 90(4) & C(36) & 295(28) & 3136(12) & 7790(14) & 368(21) \\ 71(45) & -172(12) & 2093(7) & 5679(4) & 84(7) & 0H & 1948(44) & 152(14) & 7713(21) & 582(77) \\ 71(45) & -174(16) & 3240(2) & 5501(5) & 935(3) & 62(3) & C(211) & 3473(18) & 97$	C(41)	89//(10)	1838(7)	9114(6)	109(8)		5547(28)	2806(13)	5407(11)	265(24)
	C(42)	9301(12)	622(/)	92/9(6)	131(8)	00	162(15)	2922(14)	4838(12)	308(32)
	0(43)	9300(11)	1211(8)	1004/(/)	136(9)	C(1D)	-142(13)	1461(12)	20/0(6)	239(7)
$ \begin{array}{ccccc} C(33) & T123(15) & 1686(8) & 7001(6) & 111(12) & C(2D) & 736(2S) & 1120(15) & 1305(12) & 362(15) \\ C(53) & T123(15) & 2506(11) & 7310(7) & 179(13) & C(3D) & 477(33) & 1656(18) & 1252(12) & 279(14) \\ C(62) & 3889(17) & 2278(11) & 7135(9) & 217(16) & 0E & 4763(15) & -390(6) & 1991(8) & 2004(10) \\ C(53) & 3227(14) & 3046(10) & 7737(7) & 180(13) & C(2E) & 4407(31) & 700(10) & 1590(12) & 118(26) \\ C(72) & 6344(12) & 4476(9) & 9812(7) & 171(12) & C(3E) & 4401(40) & 701(10) & 2150(14) & 416(38) \\ C(73) & 7833(14) & 4508(10) & 9209(7) & 174(13) & C(4E) & 4328(36) & 19(12) & 236(7) & 359(34) \\ C(73) & 7833(14) & 4508(10) & 9209(7) & 174(13) & C(4E) & 4328(36) & 19(12) & 236(7) & 359(34) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(2F) & 9607(23) & 4456(14) & 1313(14) & 389(21) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(2F) & 9607(23) & 4456(14) & 1313(14) & 389(21) \\ S1(2S) & 2407(3) & 2836(2) & 3346(1) & 71(2) & C(4F) & 9184(28) & 515(51) & 1333(11) & 419(25) \\ S1(3S) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(4F) & 9184(28) & 515(51) & 133(14) & 439(21) \\ S1(4S) & -178(7) & 1787(4) & 6464(3) & 60(3) & C(2G) & 413(21) & 3182(19) & 7518(14) & 348(12) \\ S1(4S) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(6) & -262(28) & 3130(12) & 799(14) & 366(21) \\ O(28) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ C(1S) & -172(12) & 2033(7) & 5679(4) & 84(7) & 0H & 1948(44) & 152(14) & 7713(21) & 585(27) \\ C(1S) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1001(38) & 1592(2) & 754(13) & 329(17) \\ C(38) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1001(38) & 159(22) & 754(19) & 449(28) \\ C(38) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1001(38) & 1592(2) & 754(19) & 449(28) \\ C(4S) & 1395(10) & 3304(3) & 362(2) & 560(13) & 62(3) & 001(36) & 1259(2) & 754(19) & 449(28) \\ C(4S) & 1395(10) & 2304(3) & 3609(7) & 106(8) & C(1H) & 4483(18) & 975(11) & 5592(9) & 227(12) \\ C(4S) & 1395(10) & 2304(3) & 3609(7) & 106(8) & C(1H) & 4497(22) & 516(18) & 6307(12) $	0(51)	/369(13)	1403(9)	7854(6)	153(11)		JJZ(20) 709(20)	939(9)	1857(13)	330(17)
$ \begin{array}{cccccc} c(51) & (513) & (510) & (713) & ($	C(52)	6607(17)	1646(8)	7001(6)	1/1(12)	C(2D)	/ 70(23)	1965/19)	1252(10)	377(20)
$ \begin{array}{cccccc} (262) & 3889(17) & 2278(11) & 7135(9) & 217(16) & 0E & 4763(15) & -390(6) & 1991(8) & 204(10) \\ (263) & 3327(14) & 3048(10) & 7737(7) & 180(13) & C(1E) & 4908(26) & 15(13) & 1531(7) & 257(23) \\ (271) & 7826(15) & 346(19) & 9705(7) & 180(13) & C(2E) & 4407(31) & 700(10) & 2150(14) & 416(38) \\ (272) & 6344(12) & 4476(9) & 9832(7) & 171(12) & C(3E) & 4201(40) & 701(10) & 2150(14) & 416(38) \\ (273) & 7833(14) & 4508(10) & 9209(7) & 174(13) & OF & 8609(14) & 5417(7) & 890(7) & 229(7) \\ (281) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4882(14) & 804(16) & 407(24) \\ (283) & 4675(14) & 5023(9) & 8813(7) & 188(11) & C(2F) & 9044(30) & 4267(9) & 992(13) 296(15) \\ s1(15) & 813(3) & 2440(2) & 5201(1) & 73(2) & C(3F) & 9467(23) & 4456(14) & 1313(14) & 389(21) \\ s1(28) & 2407(3) & 2386(2) & 3366(1) & 71(2) & C(3F) & 91697(23) & 4456(14) & 1313(14) & 389(21) \\ s1(28) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(3F) & 9164(28) & 5155(15) & 1333(11) & 419(25) \\ s1(35) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(3E) & -1303(16) & 3735(15) & 8006(9) & 297(9) \\ s1(48) & -91(3) & 1290(2) & 3691(1) & 72(2) & C(26) & 413(21) & 3182(19) & 7518(14) & 348(18) \\ 0(28) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ c1(15) & -172(12) & 2093(7) & 5679(4) & 84(7) & OH & 1948(44) & 152(14) & 7713(21) & 585(27) \\ c1(28) & 1178(7) & 1787(4) & 5031(3) & 96(4) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ c1(48) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(4G) & -775(28) & 4180(11) & 7798(13) & 296(17) \\ c1(25) & 1786(6) & 3320(4) & 3662(3) & 89(4) & 0H & 1948(44) & 152(14) & 7713(21) & 585(27) \\ c1(28) & 1164(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1001(36) & 1259(22) & 7542(19) & 449(42) \\ c1(45) & 1295(13) & 3404(7) & 64(9) & C(4H) & 2066(36) & 482(29) & 8114(16) & 562(39) \\ c1(45) & 1295(13) & 3463(6) & 3307(7) & 104(8) & -773(13) & 967(28) & 930(19) & 427(46) \\ c1(45) & 1295(13) & 346(6) & 3307(7) & 148(16) & -7733(16) & 427(14) & 5392(9) & 277(12) \\ c1(45) & 1295(17$	0(53)	/123(15)	2506(11)	/310(/)	179(13)		477(33)	1003(10)	1752(10)	377(20)
$ \begin{array}{cccccc} (263) & 3889(17) & 27/8(11) & 7135(9) & 21/(16) & 0C & 14/95(12) & -136(12) & 1991(8) & 204(10) \\ (263) & 3327(14) & 3048(10) & 7737(7) & 180(13) & C(1E) & 4008(26) & 15(13) & 1531(7) & 257(23) \\ (271) & 7826(15) & 3461(9) & 9705(7) & 180(13) & C(2E) & 4407(31) & 700(10) & 1590(12) & 318(26) \\ (272) & 6344(12) & 4476(9) & 9823(7) & 174(13) & C(4E) & 4238(36) & 19(12) & 2366(7) & 359(34) \\ (263) & 6255(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4882(14) & 804(16) & 407(24) \\ (283) & 6675(14) & 5023(9) & 8813(7) & 188(11) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ (263) & 4675(14) & 5023(9) & 8813(7) & 188(11) & 712(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ (263) & 4675(14) & 5023(9) & 8813(7) & 188(11) & 712(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ (263) & 4675(14) & 5023(9) & 8813(7) & 188(11) & 712(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ (263) & 2407(3) & 2836(2) & 3366(1) & 71(2) & 0C & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ (14) & 328(5) & 2776(3) & 4669(3) & 60(3) & C(2G) & 4130(12) & 71890(14) & 368(21) \\ 0(15) & 328(5) & 2776(3) & 4669(3) & 60(3) & C(2G) & 4130(12) & 7182(19) & 778(14) & 348(18) \\ 0(25) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ 14(15) & -747(16) & 268(9) & 4283(7) & 67(8) & C(4G) & -757(28) & 4180(11) & 7798(13) & 329(17) \\ 14(15) & -747(16) & 268(9) & 3404(7) & 64(9) & C(3H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(25) & 1782(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(35) & 1624(6) & 2434(3) & 3953(6) & 64(3) & C(2H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(35) & 1624(6) & 2434(3) & 3953(6) & 64(3) & C(2H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(35) & -586(5) & 3316(3) & 3612(2) & 56(3) & C(2H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(35) & -586(5) & 3316(3) & 3612(2) & 56(3) & C(2H) & 1003(36) & 129(22) & 7531(16) & 417(25) \\ 0(35) & -126(6) & 3200(4) & 418(13) & 89(4) & 0C(31) & 4557(33) & 202($	C(61)	4533(17)	3292(9)	6995(6)	1//(13)	05	-37(23)	2020(9)	1/32(12)	279(14)
$ \begin{array}{c} C(13) & 332/(14) & 3046(10) & 7/3/(7) & 180(13) & C(12) & 4706(30) & 101(13) & 159(12) & 318(26) \\ C(72) & 6344(12) & 4476(9) & 9832(7) & 171(12) & C(3E) & 4201(40) & 701(10) & 1590(12) & 318(26) \\ C(73) & 7833(14) & 4508(10) & 920(7) & 174(13) & OF & 8609(14) & 5417(7) & 890(7) & 229(7) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4882(14) & 8064(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 8813(7) & 188(11) & C(2F) & 9044(30) & 4267(9) & 992(13) & 296(15) \\ S1(15) & 813(3) & 2460(2) & 5201(1) & 73(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 399(21) \\ S1(25) & 2407(3) & 2836(2) & 3346(1) & 71(2) & OG & -1033(16) & 3735(15) & 8006(9) & 279(9) \\ S1(45) & -91(3) & 1290(2) & 3689(1) & 71(2) & OG & -1033(16) & 3735(15) & 8006(9) & 279(9) \\ S1(45) & -91(3) & 1290(2) & 3691(1) & 72(2) & C(16) & -262(28) & 3130(12) & 7990(14) & 368(21) \\ O(15) & 328(5) & 2776(3) & 4649(3) & 60(3) & C(26) & 413(21) & 3182(19) & 7518(14) & 348(18) \\ O(25) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(36) & 297(28) & 3894(22) & 7405(13) & 455(27) \\ C(15) & -172(12) & 2093(7) & 5679(4) & 84(7) & OH & 1948(44) & 152(14) & 7713(21) & 585(27) \\ C(25) & 1322(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1011(38) & 580(32) & 7531(16) & 417(25) \\ O(35) & 1624(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ L(25) & 291(15) & 2480(9) & 304(7) & 64(9) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 89(4) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 89(4) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 89(4) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 89(4) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 89(4) & C(1H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ C(45) & 195(7) & 3503(4) & 3662(3) & 62(3) & C(21) & 492(7) & 1027(18) & 5500(15) & 351(35) \\ C(55) & -1A6(13) & $	0(02)	3889(17)	22/8(11)	/135(9)	217(16)		4/03(13)	- 330(8)	1531(0)	204(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(63)	3327(14)	3048(10)	//3/(/)	180(13)		4908(20)	700(10)	1500(12)	237(23)
$ \begin{array}{c} C(72) & 5344(12) & 4476(9) & 9632(7) & 174(13) & C(4E) & 4326(36) & 19(12) & 236(47) & 410(36) \\ C(81) & 5188(17) & 4379(7) & 8059(7) & 187(13) & 0F & 8609(14) & 5417(7) & 890(7) & 229(7) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4882(14) & 804(16) & 407(24) \\ C(82) & 6235(14) & 5023(9) & 8813(7) & 188(11) & C(2F) & 9044(30) & 4267(9) & 992(13) & 296(15) \\ Si(15) & 813(3) & 2440(2) & 5201(1) & 73(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ Si(25) & 2407(3) & 2836(2) & 3346(1) & 71(2) & 0G & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ Si(45) & -1702(3) & 3765(2) & 3680(1) & 71(2) & 0G & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ Si(45) & -1702(3) & 3765(2) & 3680(1) & 71(2) & 0G & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ Si(45) & -1702(3) & 3765(2) & 3691(1) & 72(2) & C(1G) & -262(28) & 3130(12) & 7990(14) & 368(21) \\ 0(15) & 328(5) & 2776(3) & 4649(3) & 66(3) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ C(15) & -172(12) & 2093(7) & 5679(4) & 84(7) & 0H & 1948(44) & 152(14) & 7713(21) & 585(27) \\ C(25) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(4H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ 11(25) & 291(15) & 2480(9) & 3494(7) & 64(9) & C(3H) & 103(36) & 1259(22) & 7542(19) & 449(28) \\ 11(25) & 291(15) & 2480(9) & 3494(7) & 64(9) & C(3H) & 103(36) & 1259(22) & 7542(19) & 449(28) \\ 11(25) & 2185(13) & 3142(8) & 2613(5) & 89(8) & 0I & 3483(18) & 975(11) & 5592(9) & 227(12) \\ C(45) & 7395(10) & 2380(8) & 3509(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 351(35) \\ 0(55) & -2485(5) & 3316(3) & 3612(2) & 56(3) & C(21) & 5127(19) & 657(28) & 5300(15) & 351(35) \\ C(25) & -1746(13) & 455(7) & 3933(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 351(35) \\ C(55) & -1746(13) & 455(7) & 3933(7) & 106(8) & C(41) & 3497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -196(6) & 3320(4) & 4181(3) & 89(4) \\ C(45) & 1295(14) & 552(7) & 3685(6) & 107(8) \\ C(45) & -1095(14) & 552(7) & 3685(6) & 107(8) \\ C(44) & 1292(14) & 197(14) & 3059(19) & 5754(9) & 200(13) \\ C($	C(71)	/826(15)	3461(9)	9/05(7)	180(13)		4407(31)	700(10)	2150(12)	JIG(20)
$ \begin{array}{c} C(3) & 733(14) & 4308(10) & 9209(7) & 174(13) & 0^{4}F & 4500(13) & 5417(7) & 800(7) & 229(7) \\ C(81) & 5188(17) & 4379(7) & 8059(7) & 187(13) & 0^{4}F & 8609(14) & 5417(7) & 800(7) & 229(7) \\ C(82) & 6235(16) & 5049(9) & 8208(8) & 232(14) & C(1F) & 8287(26) & 4882(14) & 804(16) & 407(24) \\ C(83) & 4675(14) & 5023(9) & 8813(7) & 188(11) & C(2F) & 9044(30) & 4257(9) & 992(13) & 296(15) \\ S1(15) & 813(3) & 2440(2) & 5201(1) & 73(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ S1(25) & 2407(3) & 2836(2) & 3346(1) & 71(2) & 0^{6}C & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ S1(45) & -91(3) & 1290(2) & 3691(1) & 72(2) & C(16) & -262(28) & 3130(12) & 7990(14) & 368(21) \\ 0(15) & 328(5) & 2776(3) & 4649(3) & 60(3) & C(26) & 413(21) & 3182(19) & 7518(14) & 348(18) \\ 0(25) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(36) & -295(28) & 3894(22) & 7405(13) & 455(27) \\ L1(15) & -747(16) & 2648(9) & 4283(7) & 67(8) & C(46) & -775(28) & 4180(11) & 7598(13) & 329(17) \\ C(15) & -172(12) & 2093(7) & 5679(4) & 84(7) & 0H & 1948(14) & 152(14) & 7713(21) & 585(27) \\ C(25) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1011(38) & 580(32) & 7531(16) & 417(25) \\ O(35) & 1624(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ L1(25) & 291(15) & 2480(9) & 3404(7) & 66(9) & C(3H) & 1734(43) & 1199(24) & 7941(20) & 394(22) \\ O(45) & 1995(7) & 3503(4) & 3662(3) & 89(4) & O(1) & 3483(18) & 975(11) & 5592(9) & 227(12) \\ C(45) & 3795(10) & 2380(8) & 3509(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 351(35) \\ O(55) & -2452(11) & 3865(8) & 3077(7) & 114(8) & 80(4) & O(1) & 3483(18) & 975(11) & 5592(9) & 227(12) \\ C(55) & -1746(13) & 455(7) & 3933(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 351(35) \\ O(55) & -1746(13) & 455(7) & 3933(7) & 106(8) & C(11) & 4497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 455(7) & 3933(7) & 106(8) & C(11) & 4497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 455(7) & 3983(6) & 64(8) & C(31) & 4557(33) & 202(17) & 6192(13) &$	C(72)	6344(1Z)	44/6(9)	9832(7)	1/1(12)	C(4E)	4201(40)	19(12)	2150(14)	350(3/)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(73)	/833(14)	4508(10)	9209(7)	1/4(13)	0(44)	8609(14)	5/17/7)	800(7)	220(7)
$ \begin{array}{cccccc} C(82) & 6235(16) & 5049(9) & 8208(8) & 222(16) & C(2F) & 9044(30) & 4257(17) & 5042(18) & 206(15) \\ S(15) & 813(3) & 2440(2) & 5201(1) & 73(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ S1(25) & 2407(3) & 2836(2) & 3346(1) & 71(2) & OG & -1033(16) & 3735(15) & 8006(9) & 297(9) \\ S1(45) & -91(3) & 1290(2) & 3691(1) & 72(2) & C(16) & -262(28) & 3130(12) & 7990(14) & 348(21) \\ O(15) & 328(5) & 2776(3) & 4649(3) & 60(3) & C(26) & 413(21) & 3182(19) & 7518(14) & 348(18) \\ O(25) & 1778(7) & 1787(4) & 5031(3) & 96(4) & C(3G) & 295(28) & 3894(22) & 7405(13) & 455(27) \\ L1(15) & -747(16) & 2648(9) & 4283(7) & 67(8) & C(4G) & -775(28) & 4180(11) & 798(13) & 329(17) \\ C(15) & -172(12) & 2093(7) & 5679(4) & 84(7) & OH & 1948(44) & 152(14) & 7713(21) & 585(27) \\ L1(25) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1011(38) & 580(32) & 7531(16) & 417(25) \\ O(35) & 1624(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ L1(25) & 1995(7) & 3503(4) & 3662(3) & 89(4) & C(4H) & 2066(36) & 482(29) & 8114(16) & 562(39) \\ C(35) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21) & 1033(18) & 975(11) & 5592(9) & 227(12) \\ C(45) & 1795(10) & 2380(8) & 3509(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 31(45) \\ O(55) & -2452(11) & 3865(8) & 3077(7) & 116(8) \\ C(75) & -126(6) & 3220(4) & 4181(3) & 89(4) & C(41) & 3497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 4565(7) & 3933(7) & 106(8) \\ C(45) & 1295(14) & 552(7) & 3683(6) & 62(3) & c(31) & 4557(33) & 202(17) & 6192(13) & 384(34) \\ C(45) & -2196(6) & 3220(4) & 4181(3) & 89(4) & C(41) & 3497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 4565(7) & 3933(7) & 106(8) \\ C(45) & -2096(14) & 552(7) & 3685(6) & 107(8) & zu den benachbarten tert-Butyl-Gruppen von Si(1) und Si(4). \\ C(45) & 1295(14) & 552(7) & 3685(6) & 107(8) & zu den benachbarten tert-Butyl-Gruppen von Si(1) und Si(4). \\ C(115) & -182(16) & 2531(9) & 5754(9) & 200(13) & 186.1 pm recht kurz, die Abstände zum THF-Sauerstoff mit \\ C(125) & -11$	C(81)	5188(17)	43/9(/)	8059(7)	18/(13)	C(1F)	8287(26)	4882(14)	804(16)	407(24)
$ \begin{array}{c} C(35) & 4675(14) & 3023(9) & 8813(7) & 188(11) & 712(2) & C(3F) & 9697(23) & 4456(14) & 1312(14) & 389(21) \\ S1(25) & 2407(3) & 2836(2) & 3346(1) & 71(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ S1(35) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(3F) & 9697(23) & 4456(14) & 1313(14) & 389(21) \\ S1(35) & -1702(3) & 3765(2) & 3680(1) & 71(2) & C(3F) & 9184(28) & 5155(15) & 1333(11) & 419(25) \\ S1(45) & -91(3) & 1290(2) & 3691(1) & 72(2) & C(16) & -262(28) & 3130(12) & 7990(14) & 368(21) \\ 0(15) & 328(5) & 2776(3) & 4649(3) & 60(3) & C(3G) & 295(28) & 389(422) & 7405(13) & 455(27) \\ U(15) & -747(16) & 2648(9) & 4283(7) & 67(8) & C(3G) & 295(28) & 389(422) & 7405(13) & 455(27) \\ U(15) & -747(16) & 2648(9) & 4283(7) & 67(8) & C(3H) & 1048(44) & 152(14) & 7713(21) & 585(27) \\ C(25) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1011(38) & 580(32) & 7531(16) & 417(25) \\ 0(35) & 1624(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ U(25) & 1995(7) & 3503(4) & 3662(3) & 89(4) & C(4H) & 2066(36) & 482(29) & 8114(16) & 562(39) \\ C(35) & 1285(13) & 3142(8) & 2613(5) & 89(8) & 01 & 3483(18) & 975(11) & 5592(9) & 227(12) \\ U(35) & -248(5) & 3316(3) & 3612(2) & 56(3) & C(21) & 5127(19) & 657(28) & 5930(15) & 351(35) \\ O(55) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21) & 5127(19) & 657(28) & 5930(19) & 427(46) \\ U(35) & -1296(6) & 3320(4) & 4181(3) & 89(4) & C(41) & 3497(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 4565(7) & 3933(7) & 106(8) & C(11) & 4492(25) & 516(18) & 6037(12) & 278(25) \\ C(55) & -1746(13) & 4565(7) & 3933(7) & 106(8) & C(12) & 5127(19) & 657(28) & 5930(19) & 427(46) \\ U(45) & 121(14) & 1972(8) & 4262(7) & 56(8) \\ C(45) & 1295(1) & 1386(18) & 3077(7) & 114(8) \\ C(55) & -126(5) & 1798(3) & 4050(3) & 62(3) \\ C(55) & -1476(13) & 4565(7) & 3933(7) & 106(8) \\ C(45) & -106(7) & 174(4) & 3074(3) & 88(4) \\ C(75) & -147(13) & 1074(8) & 3817(6) & 107(9) \\ C(45) & -128(16) & 2631(9) & 5754(9) & 200(13) \\ C(45) & -248(18) & 1582(10) & 5397(7) & 196(15$		6235(16)	5049(9)	8208(8)	232(14)	C(2F)	9044(30)	4267(9)	992(13)	296(15)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		46/5(14)	5023(9)	8813(7)	188(11)	C(3F)	9697(23)	4456(14)	1313(14)	389(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51(15)	813(3)	2440(2)	5201(1)	/3(2)	C(4F)	9184(28)	5155(15)	1333(11)	419(25)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51(23)	2407(3)	2836(2)	3346(1)	/1(2)	OG OG	-1033(16)	3735(15)	8006(9)	297(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51(35)	-1/02(3)	3/65(2)	3680(1)	71(2)	C(1G)	-262(28)	3130(12)	7990(14)	368(21)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51(43)	-91(3)	1290(2)	3691(1)	/2(2)	c(2g)	413(21)	3182(19)	7518(14)	348(18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0(13)	JZO(J)	2//0(3)	4049(3)	60(3)	C(3G)	295(28)	3894(22)	7405(13)	455(27)
$ \begin{array}{c} L1(29) & -1/4/(18) & 2646(9) & 4263(7) & 679(4) & 84(7) & 0H & 1948(44) & 152(14) & 7713(21) & 585(27) \\ C(2$) & 1382(13) & 3002(8) & 5501(5) & 92(8) & C(1H) & 1011(38) & 580(32) & 7531(16) & 417(25) \\ 0(3$) & 1624(6) & 2434(3) & 3595(3) & 62(3) & C(2H) & 1003(36) & 1259(22) & 7542(19) & 449(28) \\ L1(2$) & 291(15) & 2480(9) & 3404(7) & 64(9) & C(3H) & 1734(43) & 1192(24) & 7941(20) & 394(22) \\ 0(4$) & 1995(7) & 3503(4) & 3662(3) & 89(4) & C(4H) & 2066(36) & 482(29) & 8114(16) & 562(39) \\ c(3$) & 2185(13) & 3142(8) & 2613(5) & 89(8) & 0I & 3483(18) & 975(11) & 5592(9) & 227(12) \\ c(4$) & 3795(10) & 2380(8) & 3509(7) & 106(8) & C(11) & 4492(27) & 1027(18) & 5500(15) & 351(35) \\ 0(5$) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21I) & 5127(19) & 657(28) & 5930(15) & 351(35) \\ 0(5$) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21I) & 5427(28) & 5930(15) & 351(35) \\ 0(5$) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21I) & 5427(28) & 5930(15) & 351(35) \\ 0(5$) & -548(5) & 3316(3) & 3612(2) & 56(3) & C(21I) & 5457(33) & 202(17) & 6192(13) & 384(34) \\ 0(6$) & -2196(6) & 3320(4) & 4181(3) & 89(4) \\ C(6$) & -2196(6) & 3320(4) & 4181(3) & 89(4) \\ C(6$) & -2452(11) & 385(8) & 3077(7) & 114(8) \\ c(6$) & -2196(6) & 3320(4) & 4181(3) & 89(4) \\ C(6$) & -106(7) & 1741(4) & 3074(3) & 88(4) \\ C(6$) & -106(7) & 1741(4) & 3074(3) & 88(4) \\ 0(7$) & -106(7) & 1741(4) & 3074(3) & 88(4) \\ C(8$) & -106(7) & 1741(4) & 3074(3) & 88(4) \\ C(11$) & -442(18) & 1582(10) & 5397(7) & 196(15) \\ C(12$) & -1482(16) & 2631(9) & 5754(9) & 200(13) \\ C(11$) & -442(18) & 1582(10) & 5397(7) & 196(15) \\ C(12$) & -1482(16) & 2631(9) & 5754(9) & 200(13) \\ C(11$) & -442(18) & 1582(10) & 5397(7) & 196(15) \\ C(12$) & -1482(16) & 2631(9) & 5754(9) & 200(13) \\ C(12$) & -1482(16) & 2631(9) & 5754(9) & 200(13) \\ C(21$) & -483(17) & 3591(9) & 5679(8) & 195(15) & 196(3) hzw & 1992 nm naturgemäß länger. Der Li = Li $	U(23)	$\frac{1770(7)}{777(16)}$	1/8/(4)	2021(2)	96(4)	C(4G)	-775(28)	4180(11)	7598(13)	329(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	-747(10)	2040(3)	4203(7)	0/(0)	OH	1948(44)	152(14)	7713(21)	585(27)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2\$)	1392(12)	2093(7)	5501(5)	04(7)	C(1H)	1011(38)	580(32)	7531(16)	417(25)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0(36)	1626(13)	3002(8)	3505(3)	92(0)	C(2H)	1003(36)	1259(22)	7542(19)	449(28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74(26)	201/15	2434(3)	3393(3)	62(3)	C(3H)	1734(43)	1192(24)	7941(20)	394(22)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0(46)	1005(7)	2400(3)	3404(7)	04(9)	C(4H)	2066 (36)	482(29)	8114(16)	562(39)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(43)	1995(7)	3303(4)	2612(3)	89(4)	01	3483(18)	975(11)	5592(9)	227(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4\$)	3705(10)	2380(8)	2013(3)	106(0)	C(1I)	4492(27)	1027(18)	5500(15)	351(35)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0(5\$)	5/9/10)	2300(0)	3509(7)	100(0)	C(21)	5127(19)	657(28)	5930(19)	427(46)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14(36)	- 340(3)	3310(3)	2002(2)	20(3)	C(31)	4557 (33)	202(17)	6192(13)	384(34)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(6\$)	-2196(6)	3320(4)	4181(3)	99(4)	C(41)	3497 (25)	516(18)	6037(12)	278(25)
$C(6\$)$ $-2452(11)$ $3865(8)$ $3077(7)$ $114(8)$ "Aquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors. $C(6\$)$ $-2452(11)$ $3865(8)$ $3077(7)$ $114(8)$ "Aquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors. $L1(4\$)$ $1211(14)$ $1972(8)$ $4262(7)$ $56(8)$ $O(8\$)$ $-106(7)$ $1741(4)$ $3074(3)$ $88(4)$ $C(7\$)$ $-1417(13)$ $1074(8)$ $3817(6)$ $107(9)$ $C(8\$)$ $1095(14)$ $552(7)$ $3685(6)$ $107(9)$ $C(11\$)$ $-442(18)$ $1582(10)$ $5397(7)$ $196(15)$ $C(12\$)$ $-1182(16)$ $2631(9)$ $5754(9)$ $200(13)$ $C(13\$)$ $247(17)$ $1731(9)$ $6178(6)$ $181(13)$ $C(21\$)$ $483(17)$ $3591(9)$ $5679(8)$ $195(15)$ 196.3 $brow$ 199.2 pm naturgemäß länger. Der Li - Li Ab	C(5\$)	-17/6(13)	4565(7)	4101(3)	104(9)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6\$)	-2452(11)	3865(8)	3077/71	114(8)	^{a)} Äquival	ente isotrope U	berechnet als	s ein Drittel de	r Spur des
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(75)	19/51	1798/31	4050(3)	62(3)	orthogona	len U _i -Tensors	an		i opur des
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11(44)	1211(1/)	1979/21	4030(3)	52(3)	21				
C(7\$) $-1417(13)$ $1074(8)$ $3817(6)$ $107(9)$ Durch diese Anordnung geraten sie nicht in Konfrontation $C(8$)$ $1095(14)$ $552(7)$ $3685(6)$ $107(8)$ zu den benachbarten tert-Butyl-Gruppen von Si(1) und Si(4). $C(11$)$ $-442(18)$ $1582(10)$ $5397(7)$ $196(15)$ Die Li - O-Bindungslängen im Vierring sind mit 184.8 bis $C(12$)$ $-1182(16)$ $2631(9)$ $5754(9)$ $200(13)$ Die Li - O-Bindungslängen im Vierring sind mit 184.8 bis $C(13$)$ $247(17)$ $1731(9)$ $6178(6)$ $181(13)$ 186.1 pm recht kurz, die Abstände zum THF-Sauerstoff mit $C(21$)$ $483(17)$ $3591(9)$ $5679(8)$ $195(15)$ 196.3 hzw 199.2 nm naturgemäß länger. Der Li - Li Ab	0(85)	-106(7)	1741(4)	3076(3)	88//1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7\$)	-1417(13)	1074(8)	3817(6)	107(9)	Durch di	ese Anordnung	g geraten sie	nicht in Koni	frontation
$C(11\xi)$ $-442(18)$ $1582(10)$ $5397(7)$ $196(15)$ Die Li – O-Bindungslängen im Vierring sind mit 184.8 bis $C(12\xi)$ $-1182(16)$ $2631(9)$ $5754(9)$ $200(13)$ $C(13\xi)$ $247(17)$ $1731(9)$ $6178(6)$ $181(13)$ 186.1 pm recht kurz, die Abstände zum THF-Sauerstoff mit $C(21\xi)$ $483(17)$ $3591(9)$ $5679(8)$ $195(15)$ 196.3 hzw 199.2 nm naturgemäß länger. Der Light Ab	C(8\$)	1095(14)	552(7)	3685(6)	107(8)	zu den be	nachharten <i>ter</i>	- t-Butyl-Gru	nnen von Si(1)	und Si(A)
C(125) -1182(16) 2631(9) 5754(9) 200(13) $C(125) -247(17) 1731(9) 6178(6) 181(13) 186.1 \text{ pm recht kurz, die Abstände zum THF-Sauerstoff mit C(215) 483(17) 3591(9) 5679(8) 195(15) 196.3 \text{ hzw} 199.2 pm naturgemäß länger. Der Lie Lieberten Lieber$	cilis	-442(18)	1582(10)	5397(7)	196/151			·	Phon ton Pr(1)	unu 31(4).
C(135) 247(17) 1731(9) 6178(6) 181(13) 186.1 pm recht kurz, die Abstände zum THF-Sauerstoff mit $C(215) 483(17) 3591(9) 5679(8) 195(15) 196.3 bzw 199.2 pm naturgemäß länger. Der Light Ab-$	C(12S)	-1182(16)	2631(9)	5754(9)	200(13)	Die Li	– O-Bindungsl	langen im Vi	erring sind mi	t 184.8 bis
C(21\$) 483(17) 3591(9) 5679(8) 195(15) 196.3 hzw 199.2 nm naturgemäß länger Der Light	c(13\$)	247(17)	1731(9)	6178(6)	181(13)	186.1 pm	recht kurz, die	e Abstände z	um THF-Saue	erstoff mit
	C(21\$)	483(17)	3591(9)	5679(8)	195(15)	196.3 bzv	v. 199.2 nm n	aturgemäß 1	änger Der L	i-li-Ah

186.1 pm recht kurz, die Abstände zum THF-Sauerstoff mit 196.3 bzw. 199.2 pm naturgemäß länger. Der Li-Li-Abstand ist bei einem angenommenen Kovalenzradius von 134 pm¹¹⁾ mit 232.8 pm bemerkenswert klein. Die Silicium-Bindungen zu den lithiierten Sauerstoff-Atomen betragen 158.5 pm.

Aufgrund der sterischen Überladung des Disiloxans ist für 7 die Ausbildung eines Cubans nicht mehr möglich. Es kommt zur koordinativen Absättigung der Li-Atome mit Hilfe von Solvens-Molekülen, und die Koordinationszahl des Lithiums senkt sich im Vergleich mit 2 auf 3. Eine ähnliche Beobachtung macht man sowohl bei der Struktur des lithiierten Tri-*tert*-butylmethanols⁽²⁾ als auch beim lithiierten Dimethyltris(trimethylsilylmethyl)silanol⁽³⁾. Die sterische Überladung des Disiloxans verhindert die gewünschte intramolekulare Li – F-Koordination, so daß die LiF-Eliminierung nicht zu einem (SiO)-Vierring führt. Es entsteht Hexa-*tert*-butylcyclotrisiloxan³⁾.

Abb. 3. Struktur von 7 im Kristall

Verbindung 11 liegt im festen Zustand als Tricyclus vor, der sich als Dimeres der Trisiloxan-Einheit bildet. Der dabei gebildete Achtring zeigt eine fast planare Geometrie (mittlere Abweichung aus der Ebene 9 pm), bei dem allerdings die Li-O-Einheit leicht herausgeklappt ist, um zur Dimeren-Bildung zur Verfügung zu stehen. Dadurch wird erreicht, daß die parallel zueinander stehenden Achtringe um 8.7 pm versetzt sind. Die Konfrontation der *tert*-Butyl-Gruppen kann dadurch minimiert werden.

Lithium wird planar von zwei Sauerstoff- und einem Fluor-Atom koordiniert. Der Li-F-Abstand ist mit 187.8 pm geringfügig länger als die Li-O-Abstände (181.2 bzw. 182.4 pm). Der Si-F-Li-Winkel beträgt 153.3°. Durch den Li-F-Kontakt kommt es mit 162.9 pm zu einer Verlängerung der Si-F-Bindung (157.1 pm im Di-*tert*-butylfluorsilanol)^{8,9}, wogegen sich der Abstand des Siliciums zum lithiierten Sauerstoff auf 158.0 pm verkürzt. In der Trisiloxan-Einheit beobachtet man ein Muster von alternierend langen und kurzen Si-O-Bindungen. Ein Si-O-Si-Winkel ist mit 178.1° fast linear. Der Li-Li-Abstand ist mit 231.3 pm wiederum sehr kurz¹¹.

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter (pm² × 10⁻¹) von 7^{a)}

Atom	×	у	Ζ.	U(eq)
·		- <u> </u>		
Si(1)	2764(1)	-15(1)	203(1)	50(1)
$S_{1}(2)$	1633(1)	1252(1)	237(1)	49(1)
Si(2')	1287(5)	837(6)	247(7)	62(4)
Si(2)	1396(1)	-647(1)	-4636(2)	48(1)
SI(3)	1713(3)	-1105(3)	-4675(3)	64(2)
51(5)	205/(1)	-3(1)	- 3832(1)	52(1)
0(1)	2934(1)	544(2)	3/0(2)	69(1)
	2114(2)	0(2)	.916(2)	56(1)
U(2)	2932(2)	617(6)	-010(2)	70(4)
	2020(0)	1017(0)	-1/02(7)	01(2)
$\Gamma(1)$	2152(2)	200(10)	203(3)	01(2)
F(1)	749(11)	209(10)	(222(2)	5/(9)
	2230(2)	-462(2)	-4333(2)	52(1)
0(4)	3021(2)	-2(2)	-2/30(2)	52(1)
L1(2)	3023(5)	-624(5)	-1/09(0)	01(4)
F(2)	939(3)	02(3)	-4/04(3)	85(3) 110(5)
$F(2^{\circ})$	2118(6)	-1869(5)	-4199(8)	110(3)
C(1)	2416(3)	-918(3)	496(4)	10(2)
C(11)	2092(4)	-918(4)	1380(6)	127(4)
C(12)	2994(5)	-1504(4)	587(6)	119(4)
C(13)	1844(4)	-1143(4)	-302(6)	110(4)
C(2)	3583(3)	298(4)	1036(4)	72(3)
C(21)	3537(4)	1/1(5)	2058(5)	124(4)
C(22)	4252(4)	-66(4)	809(6)	116(4)
C(23)	3670(4)	1104(4)	890(5)	103(4)
C(3)	1051(3)	1287(3)	-895(4)	/1(3)
C(31)	14/8(4)	1151(5)	-1656(5)	124(4)
C(32)	492(5)	693(6)	-1016(7)	109(0)
C(33)	638(5)	1962(5)	-1102(7)	184(5)
0(4)	1202(3)	13/1(3)	1280(4)	101(2)
	760(3)	2040(5)	12/3(7)	101(5)
C(42)	/32(5)	/20(2)	1403(0)	201(6)
	1971(3)	1430(7)	5779(4)	201(0)
C(5)	12/1(3)	1270(9)	-5772(4)	123(6)
C(51)	9/9/11	-12/9(0)	-6160(18)	188(14)
C(52)	1621(11)	-559(11)	-6488(11)	157(9)
C(52)	1010(13)	-1128(16)	-6297(15)	151(11)
C(53)	1797(8)	-1724(10)	-5866(16)	223(10)
C(53))	854(24)	-1862(16)	-5928(23)	217(18)
C(6)	1071(3)	-1104(3)	-3653(4)	80(3)
C(61)	271(5)	-1279(7)	-3846(9)	97(5)
C(61)	682(9)	-381(9)	-3638(22)	166(13)
C(62)	1138(8)	-588(10)	-2790(11)	138(7)
C(62)	1489(11)	-1001(16)	-2715(14)	109(12)
C(63)	1501(9)	-1797(9)	-3379(16)	197(8)
C(63')	483(16)	-1647(19)	-3839(30)	231(15)
C(7)	2805(4)	930(3)	-4317(4)	73(3)
c(71)	2233(5)	1282(4)	-3849(6)	116(4)
C(72)	2548(5)	967(4)	-5351(5)	111(4)
C(73)	3490(5)	1391(4)	-4088(6)	122(4)
C(8)	3761(3)	-480(4)	-4172(4)	71(3)
C(81)	4443(4)	-227(5)	-3574(6)	117(4)
C(82)	3667(4)	-1284(4)	-4015(6)	100(3)
C(83)	3849(4)	-382(5)	-5184(5)	111(4)
0(1A)	3574(2)	1516(2)	-1594(3)	70(2)
CIA	3368(4)	2239(4)	-1532(7)	109(4)
C(2A)	4005(4)	2657(4)	-1436(9)	186(6)
C(3A)	4564 (5)	2190(7)	-1561(11)	214(8)
C(4A)	4329(4)	1476(5)	-1489(7)	109(4)
0(2A)	3480(2)	-1578(2)	-1663(3)	74(2)
C (5A)	3194(4)	-2279(4)	-1864(6)	100(4)
C(6A)	3817 (4)	-2760(4)	-1740(7)	141(5)
C(7A)	4376(5)	-2390(6)	-1192(9)	169(6)
C(8A)	4231 (5)	-1631(5)	-1327(6)	102(4)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Lithiierte Silanole sind eine röntgenstrukturanalytisch bisher wenig untersucht Verbindungsklasse, so daß aufgrund fehlender Einordnungsmöglichkeiten nur vorsichtig Schlüsse gezogen werden können. Trotzdem zeigt sich auch

Abb. 4. Struktur von 11 im Kristall

Abb. 5. Struktur von 11 im Kristall (Blick parallel zur Li-O-Vierringebene)

Tab. 3. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter ($pm^2 \times 10^{-1}$) von 11^{a}

Atom	x	у	Z	U(eq)
Si(1)	3553(1)	751(1)	8154(1)	28(1)
Si(2)	947(1)	-1547(1)	6456(1)	34(1)
Si(3)	2285(1)	-3329(1)	7426(1)	32(1)
0(1)	4487(2)	445(1)	9145(1)	36(1)
0(2)	2203(2)	-409(1)	7296(1)	36(1)
0(3)	1377(2)	-2673(1)	6724(1)	36(1)
F(1)	3717(2)	-2342(1)	8379(1)	56(1)
Li(1)	4572(5)	-912(3)	9417(3)	43(1)
C(1)	5043(3)	1333(2)	7333(2)	46(1)
C(2)	2282(3)	1679(2)	8654(2)	41(1)
C(3)	-1167(3)	-1680(2)	6577(3)	71(1)
C(4)	1133(4)	-1572(2)	5052(2)	67(1)
C(5)	843(3)	-4103(2)	8137(2)	54(1)
C(6)	3430(3)	-4109(2)	6605(2)	41(1)
C(11)	5746(3)	368(3)	6916(3)	71(1)
C(12)	6470(4)	2355(3)	8033(3)	88(1)
C(13)	4258(4)	1662(3)	6346(3)	83(1)
C(21)	3362(3)	2852(2)	9400(2)	64(1)
C(22)	1137(3)	1875(2)	7741(2)	64(1)
C(23)	1235(3)	1037(3)	9316(3)	75(1)
C(51)	375(4)	-3194(3)	8916(3)	99(1)
C(52)	-722(4)	-4902(3)	7318(3)	89(1)
C(53)	1605(4)	-4785(2)	8810(3)	85(1)
C(61)	4808(3)	-4346(3)	7311(3)	81(1)
C(62)	4155(3)	-3382(3)	5878(3)	85(1)
C(63)	2288(3)	-5265(3)	5855(3)	78(1)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

$\begin{array}{c} \text{Si}(1) - O(1) \\ \text{Si}(2) - O(3) \\ \text{Si}(3) - O(5) \\ \text{Si}(3) - O(5) \\ \text{Si}(4) - O(7) \\ O(1) - \text{Li}(1) \\ O(1) - \text{Li}(4) \\ \text{Li}(1) - O(4) \\ \text{Li}(1) - O(4) \\ O(2) - \text{Li}(4) \\ O(2) - \text{Li}(4) \\ O(3) - \text{Li}(3) \\ \text{Li}(2) - O(7) \\ O(5) - \text{Li}(3) \\ \text{Li}(3) - O(6) \end{array}$	156.7(7) 159.3(7) 159.3(7) 159.6(8) 192.3(24) 207.7(19) 202.4(19) 206.8(19) 190.5(25) 211.6(19) 212.3(18) 209.6(22)	$\begin{array}{c} Si(1)-O(2)\\ Si(2)-O(4)\\ Si(3)-O(6)\\ Si(4)-O(8)\\ O(1)-Li(3)\\ Li(1)-O(7)\\ O(3)-Li(2)\\ Li(2)-O(5)\\ Li(2)-O(6)\\ O(5)-Li(4)\\ O(7)-Li(4)\\ \end{array}$	168.3(7) 167.9(8) 167.1(9) 166.4(7) 193.9(19) 212.3(19) 190.6(19) 194.6(18) 192.8(23) 206.0(23) 201.9(19) 189.0(23)
O(1)-Si(1)-O(2) O(3)-Si(2)-O(4) O(5)-Si(3)-O(8) Si(1)-O(1)-Li(1) Li(1)-O(1)-Li(3) Li(1)-O(1)-Li(4) O(1)-Li(1)-O(3) O(1)-Li(1)-O(4) Si(2)-O(3)-Li(2) Si(2)-O(3)-Li(2) Si(2)-O(3)-Li(3) O(3)-Li(2)-O(8) O(7)-Li(2)-O(8) O(7)-Li(2)-O(8) O(7)-Li(2)-O(8) O(7)-Li(2)-O(8) O(7)-Li(2)-O(8) O(7)-Li(2)-O(8) Si(3)-O(5)-Li(4) Li(2)-O(7)-Li(4) Si(4)-O(7)-Li(4) D(2)-Li(4)-O(7) O(1)-Li(4)-O(7) O(101.8(4) 102.6(3) 101.7(4) 102.1(4) 128.3(7) 84.8(9) 78.7(8) 93.0(10) 129.2(11) 101.4(8) 89.7(6) 137.4(8) 131.9(7) 86.6(9) 100.3(8) 141.2(11) 74.7(7) 129.0(6) 81.2(9) 84.4(8) 99.8(10) 92.5(10) 124.1(10) 91.4(6) 128.7(6) 82.7(8) 136.4(12) 95.5(8)	$\begin{array}{l} Si(1)-O(1)-Li(3)\\ Si(1)-O(1)-Li(4)\\ Li(3)-O(1)-Li(4)\\ O(3)-Li(1)-O(4)\\ O(1)-Li(1)-O(7)\\ Si(2)-O(3)-Li(2)\\ Li(1)-O(3)-Li(2)\\ Li(1)-O(3)-Li(2)\\ O(3)-Li(2)-O(7)\\ O(5)-Li(2)-O(7)\\ O(5)-Li(2)-O(7)\\ O(5)-Li(2)-O(7)\\ Si(3)-O(5)-Li(4)\\ D(1)-Li(3)-O(5)\\ O(1)-Li(3)-O(6)\\ Si(4)-O(7)-Li(1)\\ Li(1)-O(7)-Li(2)\\ Li(1)-O(7)-Li(2)\\ D(1)-Li(4)-O(7)\\ O(1)-Li(4)-O(7)\\ O(2)-Li(4)-O(7)\\ Si(4)-O(7)-Li(2)\\ D(1)-Li(4)-O(7)\\ Si(4)-O(7)-Li(2)\\ Si(4)-O(7)-Li(2)\\ Si(4)-O(7)-Li(2)\\ Si(4)-O(7)-Li(2)\\ Si(4)-O(8)-Li(2)\\ Si(4)-O(8)-Li(2)\\$	145.0(8) 92.7(5) 81.8(7) 76.0(6) 100.3(9) 130.3(13) 89.6(6) 78.6(7) 80.3(8) 97.5(10) 93.3(8) 121.1(8) 90.7(6) 93.2(7) 144.5(8) 78.9(7) 100.1(7) 135.4(12) 73.0(7) 145.1(8) 79.6(8) 84.0(9) 75.0(7) 99.0(8) 125.7(10) 91.5(6)

Tab. 4. Ausgewählte Bindungsabstände [pm] und Bindungswinkel

[] von 2

Tab. 5. Ausgewählte Bindungsabstände [pm] und Bindungswinkel [°] von 7

Si(1)-O(1) Si(2)-O(1) Si(3)-O(3) Si(4)-O(3) O(2)-Li(1) Li(1)-O(4) Li(1)-O(4) Li(2)-O(2a)	165.6(4) 160.4(4) 165.7(4) 164.9(4) 186.0(11) 186.1(11) 196.3(11) 198.2(11)	Si(1)-O(2) Si(2)-F(1) Si(3)-F(2) Si(4)-O(4) O(2)-Li(2) O(4)-Li(2)	158.8(4) 159.6(5) 158.2(6) 158.3(4) 184.8(10) 185.8(10)
$\begin{array}{c} O(1)-Si(1)-O(2)\\ O(3)-Si(4)-O(4)\\ Si(1)-O(1)-Si(2)\\ Si(1)-O(2)-Li(1)\\ Li(1)-O(2)-Li(2)\\ O(2)-Li(1)-O(1\alpha)\\ Si(3)-O(3)-Si(4)\\ Si(4)-O(4)-Li(1)\\ Li(1)-O(4)-Li(2)\\ O(2)-Li(2)-O(2\alpha)\\ \end{array}$	112.3(2) 112.4(2) 159.4(3) 141.1(4) 77.8(5) 124.3(5) 156.0(3) 141.3(4) 77.5(5) 126.6(5)	Si(1)-O(2)-Li(2) O(2)-Li(1)-O(4) O(4)-Li(1)-O(1a) Si(4)-O(4)-Li(2) O(2)-Li(2)-O(4) O(4)-Li(2)-O(2a)	140.8(4) 101.8(5) 125.3(6) 140.9(4) 102.3(5) 125.0(6)

hier eine breite Vielfalt der Bindungsgeometrien in Lithium-Verbindungen¹⁴⁾, die offensichtlich von sterischen, aber auch von elektronischen Effekten bestimmt werden. In Verbindung 2 ist eine tetramere Anordnung möglich, da dies der räumliche Anspruch der Monomeren-Einheit noch zuläßt. Für Verbindung 7 ist dies aufgrund der zusätzlichen Substituenten am zweiten Sauerstoff ausgeschlossen. Lithium ist nur noch dreifach koordiniert und zieht dazu ein Lösungsmittelmolekül zur Absättigung heran. In Verbindung 11 ist Lithium planar dreifach koordiniert.

Tab. 6. Ausgewählte Bindungsabstände [pm] und Bindungswinkel [°] von 11

Si(1)-O(1) Si(2)-O(3) Si(3)-F(1) O(1)-Li(1a) Li(1)-O(1a)	158.0(2) 164.1(2) 162.9(1) 181.2(4) 181.2(4)	Si(1)-O(2) Si(2)-O(2) Si(3)-O(3) O(1)-Li(1) F(1)-Li(1)	165.0(1) 159.7(1) 160.0(2) 182.4(4) 187.8(3)
O(1)-Si(1)-O(2) O(2)-Si(2)-O(3) O(3)-Si(3)-F(1) Si(1)-O(1)-Li(1) Li(1)-O(1)-Li(1)a) Si(2)-O(3)-Si(3) O(1)-Li(1)-F(1) O(1)-Li(1)-O(1a)	111.2(1) 109.2(1) 106.7(1) 133.0(1) 79.0(2) 155.0(1) 124.2(2) 101.0(2)	Si(1)-O(1)-Li(1a) Si(1)-O(2)-Si(2) Si(3)-F(1)-Li(1) F(1)-Li(1)-O(1a)	145.9(2) 178.1(1) 153.3(2) 134.7(2)

Die Li – O(Si)-Abstände in 11 sind recht kurz und liegen im Bereich vergleichbarer Li – O(C)-Verbindungen^{7,12)}, wobei diese Abstände in dreifach koordinierten Verbindungen wesentlich kürzer als in den vierfach koordinierten Verbindungen sind. Die Anzahl der beschriebenen Li – F-Bindungsabstände in kovalenten Molekülen ist gering. Der hier erstmals gefundene (O)LiF-Abstand ist mit 187 pm nur 5 pm länger als die bisher kürzeste Li – F-Bindung im LiF-Addukt des Iminosilans¹⁵⁾.

Die Si – O(Li)-Bindungen verkürzen sich um 6–8 pm gegenüber einer Si – O(H)-Bindung in Di-*tert*-butylsilanol^{8,9)}, also um 4–5%. Bei Lithium-fluorsilylamiden verkürzt sich die entsprechende Si–N-Bindung im Schnitt um 4%. Hier finden sich die kürzesten Abstände in Verbindung **2**, da das Lithium zusätzlich an die OH-Funktion koordiniert ist.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

MS: Varian CH-5. – NMR: 30proz. Lösungen in CDCl₃ mit TMS bzw. C_6F_6 als int. Standard; Bruker AM-250.

Lithium-di-tert-butyl(hydroxy)silanolat (2): 0.01 mol 1 in 10 ml Hexan wird mit 0.01 mol n-C₄H₉Li (15% in Hexan) lithiiert. Anschließend wird unter Rühren 1 h erhitzt und in der Siedehitze soviel THF zugegeben, bis die Lösung vollständig aufklart. Nach Abkühlen der Lösung kristallisiert 2 nach ca. 12 h aus; Ausb. 1.7 g (95%). – ¹³C-NMR: δ = 29.16 (CC₃), 21.07 (CC₃). – ²⁹Si-NMR: δ = -14.37.

Lithium-di-tert-butyl(di-tert-butylfluorsiloxy)silanolat (7): Die Darstellung erfolgt analog der von 2, ausgehend von 3¹⁰; Ausb. 3.2 g (95%). $-^{13}$ C-NMR: $\delta = 29.11$ (LiOSiCC₃), 27.79 (FSiCC₃), 21.42 (LiOSiC), 20.43 (FSiC, ²J_{CF} = 16.6 Hz). $-^{29}$ Si-NMR: $\delta = -15.84$ SiF (J_{SiF} = 309.6 Hz), -23.63 OSiO.

Verbindungen 6, 8-9: 0.01 mol 2 in 50 ml Hexan/THF wird bei 0°C zu 0.01 mol Cl₂SiMe₂ bzw. 0.01 mol F₂SiMe₂ getropft. Anschließend wird das Gemisch innerhalb von 2 h auf Raumtemp. erwärmt und danach 1 h unter Rückfluß erhitzt. Die Reinigung der gebildeten Produkte erfolgt durch Destillation.

3,3-Di-tert-butyl-1,5-dichlor-1,1,5,5-tetramethyltrisiloxan (6): Sdp. 65 °C/0.01 mbar; Ausb. (bezogen auf Cl₂SiMe₂) 3.4 g (96%). ¹H-NMR: $\delta = 0.98$ (CMe₃), 0.37 (SiCH₃). - ¹³C-NMR: $\delta = 27.25$ (CC₃), 19.97 (CC₃), 4.18 (SiCH₃). - ²⁹Si-NMR: $\delta = 2.80$ (SiMe), -22.42 (SiCMe₃). - FI-MS: 303 [M⁺ - C₄H₉].

1,1-Di-tert-butyl-3-fluor-1-hydroxy-3,3-dimethyldisiloxan (8): Sdp. 36 °C/0.01 mbar; Ausb. (bezogen auf F₂SiMe₂) 1.5 g (60%). - ¹H-NMR: δ = 2.21 (OH), 1.03 (CMe₃), 0.14 (SiMe, ³J_{HF} = 6.2 Hz). - ¹³C-NMR: δ = 27.36 (CC₃), 19.99 (CC₃), -1.09 (SiCH₃, ²J_{CF} = 19.3 Hz). - ¹⁹F-NMR: δ = 34.37. - ²⁹Si-NMR: δ = -8.55 (SiMe, J_{SiF} = 276.1 Hz), -15.21 (SiCMe₃). - FI-MS: 252 [M⁺].

3,3-Di-tert-butyl-1,5-difluor-1,1,5,5-tetramethyltrisiloxan (9): Sdp. 50 °C/0.01 mbar; Ausb. 0.2 g (5%). $-^{13}$ C-NMR: $\delta = 29.19$ (CC₃), 20.06 (CC₃), -1.13 (SiCH₃, $^{2}J_{CF} = 19.1$ Hz). $-^{19}$ F-NMR: $\delta = 34.37$ ($^{3}J_{HF} = 6.3$ Hz). $-^{29}$ Si-NMR: $\delta = -9.19$ (SiF, $J_{SiF} = 277.5$ Hz), -23.36 (SiCMe₃). - FI-MS: 328 [M⁺].

Lithium-di-tert-butyl(3,3-di-tert-butyl-3-fluor-1,1-dimethyldisiloxy)silanolat (11): Die Darstellung von 11 erfolgt analog der von 2 aus 5 ohne THF-Zugaben; Ausb. 4.0 g (95%).

Kristallstrukturanalysen von 2, 7 und 11¹⁶): Die Intensitätsmessungen wurden auf einem Stoe-Siemens-AED-Diffraktometer mit Graphit-monochromatisierter Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm) durchgeführt. Für 11 erfolgte die Messung bei -80° C, für 2 und 7 bei Raumtemp. Nach Bestimmung und Verfeinerung der Zellparameter wurden die Reflexintensitäten nach der Profile-fitting-Methode¹⁷) bestimmt. Die Strukturen wurden mit direkten Methoden (SHEXTL und SHELXS-86) gelöst. Die Nichtwasserstoff-Atome wurden anisotrop verfeinert. Die Nichtwasserstoff-Atome der THF-Moleküle bei 2 wurden teilweise nur mit isotropen U_i -Parametern versehen. Die Wasserstoff-Atome wurden geometrisch positioniert (C-H-Abstand 96 ppm, H-C-H-Winkel 109.5°) und mit fixierten U_i -Werten versehen.

Kristallographische Daten

2: Kristallgröße 0.6 × 0.7 × 0.8 mm, Raumgruppe $P\overline{1}$, a = 1339.0(4), b = 2131.8(5), c = 2567.4(5) pm, $\alpha = 80.57(3)$, $\beta = 84.14(3)$, $\gamma = 72.66(3)^{\circ}$, V = 6.890 nm³, Z = 4, $D_{ber} = 0.866$ Mgm⁻³, $\mu = 0.09$ mm⁻¹, Anzahl der gemessenen Intensitäten ($2\Theta_{max} = 45^{\circ}$) 14490, symmetrieunabhängig 12810, beobachtet [$F > 4\sigma(F)$] 7466, R = 0.122, $R_w = 0.130$ [$w^{-1} = \sigma^2(F) + 0.004 \cdot F^2$], Anzahl der verfeinerten Parameter 1172, max. Restelektronendichte 0.70 $\cdot 10^{-6}$ e pm⁻³.

7: Kristallgröße $0.7 \times 0.8 \times 0.9$ mm, Raumgruppe $P_{2_1/c}$, a = 1896.6(3), b = 1875.1(3), c = 1476.3(2) pm, $\beta = 99.30(1)^\circ$, V = 5.181 nm³, Z = 4, $D_{ber} = 1.186$ Mgm⁻³, $\mu = 0.15$ mm⁻¹, Anzahl der gemessenen Intensitäten ($2\Theta_{max} = 50^\circ$) 9759, symmetrieunabhängig 9099, beobachtet [$F > 4\sigma(F)$] 4670, R = 0.095, $R_w = 0.086$ [$w^{-1} = \sigma^2(F) + 0.0007 \cdot F^2$], Anzahl der verfeinerten Parameter 579, max. Restelektronendichte 0.46 $\cdot 10^{-6}$ e pm⁻³.

11: Kristallgröße $0.2 \times 0.3 \times 0.5$ mm, Raumgruppe $P\bar{1}$, a = 873.4(1), b = 1252.5(1), c = 1295.4(1) pm, $\alpha = 101.99(1)$, $\beta = 99.29(0)$, $\gamma = 105.58(1)^{\circ}$, V = 1.299 nm³, Z = 1, $D_{ber} = 1.065$ Mgm⁻³, $\mu = 0.20$ mm⁻¹, Anzahl der gemessenen Intensitäten $(2\Theta_{max} = 50^{\circ})$ 4629, symmetrieunabhängig 4559, beobachtet $[F > 4\sigma(F)]$ 3900, R = 0.043, $R_w = 0.047$ $[w^{-1} = \sigma^2(F) + 0.0002 \cdot F^2]$, Anzahl der verfeinerten Parameter 235, max. Restelektronendichte 0.47 $\cdot 10^{-6}$ e pm⁻³.

CAS-Registry-Nummern

- 1: 13321-36-3 / 2 (Salz): 96284-27-4 / 2 (Koordinationsverbindung): 118631-71-3 / 6: 118631-65-5 / 7 (Salz): 118631-69-9 / 7 (Koordi-nationsverbindung): 118631-70-2 / 8: 118655-94-0 / 9: 118631-66-6 / 10: 118631-67-7 / 11 (Salz): 118631-68-8 / 11 (Koordinations-verbindung): 118631-72-4 / Me₂SiCl₂: 75-78-5 / Me₂SiF₂: 353-66-2 / (Me₃C)₂SiFOLi: 78393-16-5
- ¹⁾ D. Stalke, U. Klingebiel, G. M. Sheldrick, Chem. Ber. 121 (1988) 1457.
- ²⁾ D. Stalke, M. Meyer, M. Andrianarison, U. Klingebiel, G. M. Sheldrick, Manuskript in Vorbereitung. ³⁾ U. Klingebiel, Angew. Chem. 93 (1981) 696; Angew. Chem. Int.
- Ed. Engl. 20 (1981) 678.
- G. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Shel-drick, Z. Anorg. Allg. Chem. 519 (1984) 87.
 O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Shel-bier and the state of the state of
- drick, Angew. Chem. 96 (1984) 904; Angew. Chem. Int. Ed. Engl. 23 (1984) 891.
- ⁶⁾ K. Dippel, U. Klingebiel, G. M. Sheldrick, D. Stalke, Chem. Ber. 120 (1987) 611.

- ⁷⁾ R. Amstutz, W. B. Schweizer, D. Seebach, J. D. Dunitz, Helv. Chim. Acta 64 (1981) 2617.
- ⁸⁾ O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Chem. Ber. 117 (1984) 2988. ⁹⁾ N. H. Buttrus, C. Eaborn, P. B. Hitchcock, A. K. Saxena, J.
- Organomet. Chem. 284 (1985) 291
- ¹⁰⁾ W. Clegg, U. Klingebiel, G. M. Sheldrick, Z. Naturforsch., Teil B, 37 (1982) 423.
- ¹¹⁾ L. Sutton, Tables of Interatomic Distances and Configurations in ¹²⁾ J. Hroslef, H. Hope, B. D. Murray, P. P. Power, J. Chem. Soc.,
- Chem. Commun. 1983, 1432.
- ¹³⁾ P. B. Hitchcock, N. B. Buttrus, A. C. Sullivan, J. Organomet. Chem. 303 (1986) 321.
- ¹⁴⁾ W. N. Setzer, P. von Rague Schleyer, Adv. Organomet. Chem. 24 (1985) 353
- ¹⁵⁾ R. Boese, U. Klingebiel, J. Organomet. Chem. 315 (1986) C17.
 ¹⁶⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53676, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ¹⁷⁾ W. Clegg, Acta Crystallogr., Sect. A **37** (1981) 22.

[313/88]